Exercise 4.2
Show that
$$C[0, 1]$$
 is not complete in $||\cdot||_2$.
Proof: Put $f_n(x) = \begin{cases} 0, 0 \le x \le \frac{1}{2} - \frac{1}{n}, \\ 1, \frac{1}{2} + \frac{1}{n} \le x \le 1, \\ \frac{1}{n eav}, \frac{1}{2} - \frac{1}{n} < x < \frac{1}{2} + \frac{1}{n}. \end{cases}$
Then for $m \le n$, $||f_n - f_m||_2 \le \left(\int_{\frac{1}{2} - \frac{1}{m}}^{\frac{1}{2} - \frac{1}{m}} 1^2 dx\right)^{\frac{1}{2}} = \left(\frac{1}{m}\right)^{\frac{1}{2}}.$
Therefore, (f_n) is Cauchy.
Suppose $||f_n - f||_2 \rightarrow 0$ as $n \rightarrow \infty$ for some $f \in C[0, 1]$.
Write $f(\frac{1}{2}) = C$.
Then $C \neq 0$ or $C \neq 1$.
If $C \neq 0$, since f is continuous, there exists
No EAV such that $|f(x)| \ge C/2$ for $x \in \left(\frac{1}{2} - \frac{1}{n_0}, \frac{1}{2} + \frac{1}{n_0}\right)$
For any $N \ge \frac{1}{2n_0}, ||f_n - f||_2 \ge \left(\int_{\frac{1}{2} - \frac{1}{n_0}}^{\frac{1}{2} - \frac{1}{2n_0}} f_n(x_0 - f(x_0)|^2\right)^{\frac{1}{2}}$
 $= \left(\frac{1}{2n_0} \left(\frac{C}{2}\right)^2\right)^{\frac{1}{2}}$
 $= \frac{C}{2nn_0} > 0$.
Thus $||f_n - f||_2 \rightarrow 0$ as $n \rightarrow \infty$.
Contradiction!

Exercise 4.12
Let X and Y be Banach spaces. If
$$T: X \rightarrow Y$$
 is
a bijection, show that $T^*: Y^* \rightarrow X^*$ is a bijection.
Conclude that if T is an isomorphism, so is T^* .

Proof: (i) Injectivity:
Pick any
$$y_1^*, y_2^* \in Y^*$$
 with $y_1^* \neq y_2^*$.
Then $\exists y \in Y$ such that $y_1^*(y) \neq y_2^*(y)$.
Since T is surjective, $\exists x \in X$ such
that $Tx = y$. Then $y_1^*(Tx) \neq y_2^*(Tx)$.
By definition $T^*y_1^*(x) \neq T^*y_2^*(x)$.
Thus $T^*y_1^* \neq T^*y_2^*$

(ii) Surjectivity:
Pick any
$$\chi^* \in \chi^*$$
.
Put $y^*(y) = \chi^*(T^{-1}y)$ for any $y \in Y$.
Then $T^*y^*(x) = y^*(Tx) = \chi^*(T^{-1}Tx) = \chi^*(x)$ for any $x \in \chi$.
Therefore, $T^*y^* = \chi^*$.

(iii) Isomorphism: Since T is bounded firear, so is T*. Since T* is a bounded finew bijection, by Open Mapping Theorem, (T*) is continuous. Hence, T is an isomorphism.

Ŋ